skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nathan Kallus, Xiaojie Mao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Off-policy evaluation and learning (OPE/L) use offline observational data to make better decisions, which is crucial in applications where online experimentation is limited. However, depending entirely on logged data, OPE/L is sensitive to environment distribution shifts — discrepancies between the data-generating environment and that where policies are deployed. Si et al., (2020) proposed distributionally robust OPE/L (DROPE/L) to address this, but the proposal relies on inverse-propensity weighting, whose estimation error and regret will deteriorate if propensities are nonparametrically estimated and whose variance is suboptimal even if not. For standard, non-robust, OPE/L, this is solved by doubly robust (DR) methods, but they do not naturally extend to the more complex DROPE/L, which involves a worst-case expectation. In this paper, we propose the first DR algorithms for DROPE/L with KL-divergence uncertainty sets. For evaluation, we propose Localized Doubly Robust DROPE (LDR2OPE) and show that it achieves semiparametric efficiency under weak product rates conditions. Thanks to a localization technique, LDR2 OPE only requires fitting a small number of regressions, just like DR methods for standard OPE. For learning, we propose Continuum Doubly Robust DROPL (CDR2OPL) and show that, under a product rate condition involving a continuum of regressions, it enjoys a fast regret rate of 𝑂(𝑁−1/2) even when unknown propensities are nonparametrically estimated. We empirically validate our algorithms in simulations and further extend our results to general 𝑓-divergence uncertainty sets. 
    more » « less
  2. Off-policy evaluation and learning (OPE/L) use offline observational data to make better decisions, which is crucial in applications where online experimentation is limited. However, depending entirely on logged data, OPE/L is sensitive to environment distribution shifts — discrepancies between the data-generating environment and that where policies are deployed. Si et al., (2020) proposed distributionally robust OPE/L (DROPE/L) to address this, but the proposal relies on inverse-propensity weighting, whose estimation error and regret will deteriorate if propensities are nonparametrically estimated and whose variance is suboptimal even if not. For standard, non-robust, OPE/L, this is solved by doubly robust (DR) methods, but they do not naturally extend to the more complex DROPE/L, which involves a worst-case expectation. In this paper, we propose the first DR algorithms for DROPE/L with KL-divergence uncertainty sets. For evaluation, we propose Localized Doubly Robust DROPE (LDR2 OPE) and show that it achieves semiparametric efficiency under weak product rates conditions. Thanks to a localization technique, LDR2 OPE only requires fitting a small number of regressions, just like DR methods for standard OPE. For learning, we propose Continuum Doubly Robust DROPL (CDR2 OPL) and show that, under a product rate condition involving a continuum of regressions, it enjoys a fast regret rate of 𝑂(𝑁−1/2) even when unknown propensities are nonparametrically estimated. We empirically validate our algorithms in simulations and further extend our results to general 𝑓 -divergence uncertainty sets. 
    more » « less